

# HLA Baseline Definition Overview, Rules, and Interface Specification

Dr. Judith Dahmann
Chief Scientist
Defense Modeling & Simulation Office
(703) 998-0660 fax (703) 998-0667
jdahmann@dmso.mil



## **Topics**

- Overview of HLA
- Rules
- Runtime Interface Specification



## **Overview**



## **High Level Architecture**

- •Major functional elements, interfaces, and design rules, pertaining to all DoD simulation applications, and providing a common framework within which specific system architectures can be defined
- HLA is the Technical Architecture for DoD Simulations

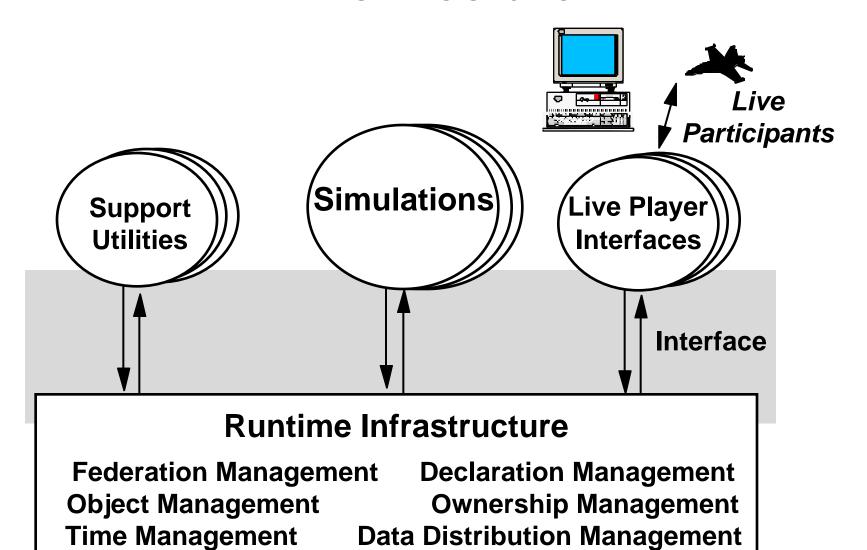


## **Defining the HLA**

#### HLA Rules

 A set of rules which must be followed to achieve proper interaction of simulations in a federation. These describe the responsibilities of simulations and of the runtime infrastructure in HLA federations.

#### Interface Specification


- Definition of the interface functions between the runtime infrastructure and the simulations subject to the HLA.

#### Object Model Template

- The prescribed common method for recording the information contained in the required HLA Object Model for each federation and simulation.



## Functional View of the Architecture





## **HLA Object Models and OMT**

#### Federation Object Model (FOM)

- A description of all shared information (objects, attributes, associations, and interactions) essential to a particular federation

#### Simulation Object Model (SOM)

- Describes objects, attributes and interactions in a particular simulation which *can* be used externally in a federation

#### Object Model Template (OMT)

- Provides a common framework for HLA object model documentation
- Fosters interoperability and reuse of simulations and simulation components via the specification of a common representational framework



## Rules



### **HLA Rules**

- Ten basic rules that define the responsibilities and relationships among the components of an HLA federation
  - Five rules apply to federations
  - Five rules apply to federates



### **Federation Rules**

#### Rule 1:

- Federations shall have an HLA Federation Object Model (FOM), documented in accordance with the HLA Object Model Template (OMT).

#### Rule 2:

- In a federation, all object representation shall be in the federates, not in the runtime infrastructure (RTI).

#### Rule 3:

 During a federation execution, all exchange of FOM data among federates shall occur via the RTI.



## **Federation Rules**

#### Rule 4:

- During a federation execution, federates shall interact with the runtime infrastructure (RTI) in accordance with the HLA interface specification.

#### Rule 5:

- During a federation execution, an attribute of an instance of an object shall be owned by only one federate at any given time.



## **Federate Rules**

#### • Rule 6:

- Federates shall have an HLA Simulation Object Model (SOM), documented in accordance with the HLA Object Model Template (OMT).
  - Each simulation must describe the functionality it is able to provide to a federation in OMT terms
  - All SOM objects, attributes and interactions may not be used in any given federation
    - **SOM** describes the array of options available



### **Federate Rules**

- Rules 7 9: Federates have to abide by the provisions of their SOM
  - Federates shall be able to update and/or reflect any attributes of objects in their SOM and send and/or receive SOM object interactions externally, as specified in their SOM. (Rule 7)
  - Federates shall be able to transfer and/or accept ownership of attributes dynamically during a federation execution, as specified in their SOM. (Rule 8)
  - Federates shall be able to vary the conditions (e.g., thresholds) under which they provide updates of attributes of objects, as specified in their SOM. (Rule 9)



## **Federate Rules**

- Rule 10: Time Management
  - Federates shall be able to manage local time in a way which will allow them to coordinate data exchange with other members of a federation.
    - Simulations in a federation must manage time so that there appears to be one clock
    - Internally, a simulation manages time any way it wishes, as long is it meets commitments to other simulations in the federation



## **Interface Specification**



## Interface Specification

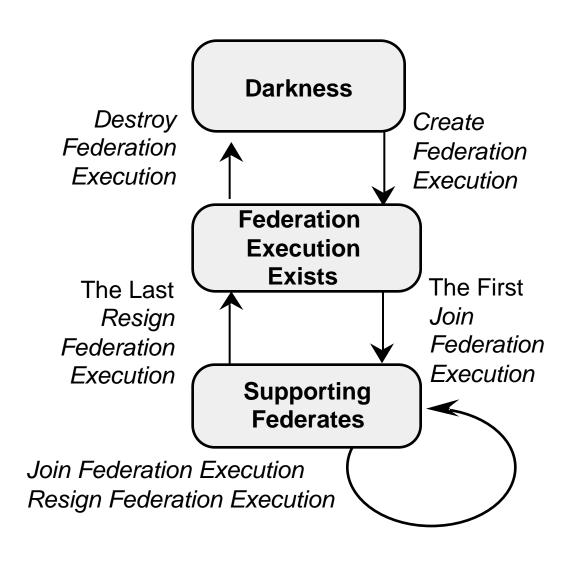
- Provides a specification of the functional interfaces between federates and the RTI
  - 63 interfaces in six service groups
- Includes:
  - Name and Descriptive Text
  - Supplied Parameters
  - Returned Parameters
  - Pre-conditions
  - Post-conditions
  - Exceptions
  - Related Services

and Application Programmers Interface in CORBA IDL

- Language specific APIs are planned as annexes
  - C++ is currently available (will be implemented with RTI 1.0)

# Six HLA Runtime Infrastructure Service Groups

- Federation Management
- Declaration Management
- Object Management
- Ownership Management
- Time Management
- Data Distribution Management




## **Federation Management**

- Coordinate federation-wide activities throughout the life of a federation execution
  - Used by federates to manage a federation execution to meet their needs
  - Includes RTI initialization data
    - Initializing name space, transportation and ordering defaults and routing space names and dimensions
- Interface functions include
  - Creation and destruction of a federation execution
  - Joining and resigning of a federate
  - Coordination of federation saves
  - Pausing and resuming a federation execution



## **Federation Management**





## **Declaration Management**

- Allow federates to specify the types of data they will send or receive by object class and attribute name and by interaction class from the FOM
- Interface functions include specification of:
  - Data to be sent:
    - Object classes and attributes and interaction classes that the federate is able to update or send
  - Data to be received:
    - Object classes and attributes and interaction classes that the federate is interested to receive
  - Controls on data to be sent:
    - Feedback to the federates from the RTI when attribute updates and interactions should be sent given the interest in those by other federates



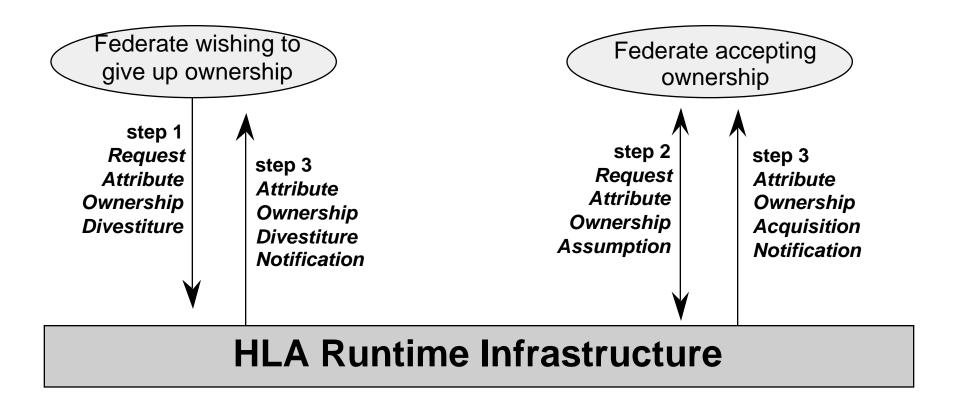
## **Object Management**

- Supports creation, modification, and deletion of objects, their attributes and the interactions they produce
- Interface functions include
  - Federate requests for IDs
  - Registering and discovering objects
  - Updating and reflecting object attributes
  - Sending and receiving interactions
  - Deleting and removing objects
  - Changing default transportation and event ordering types



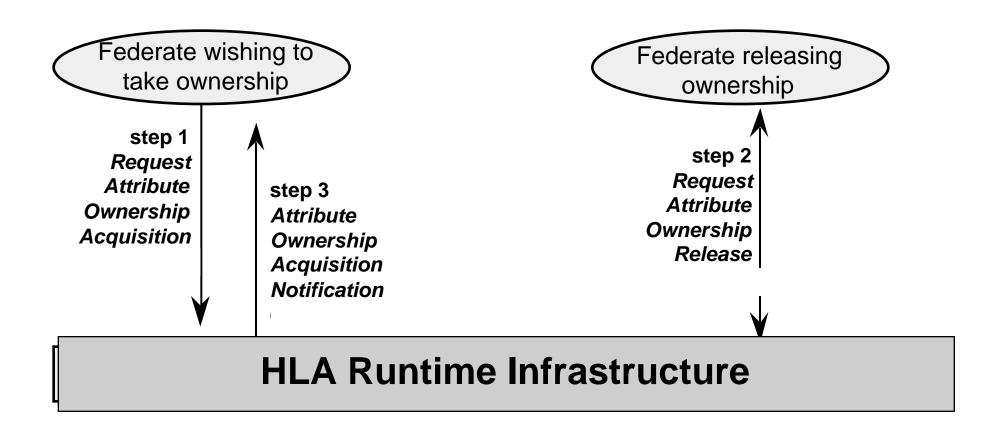
## **Time Management**

- Control advancement of federates along with federation time
  - Coordinated with object management services to support causal behavior across the federation
  - Designed to support federates with different ordering and delivery requirements
- Interface functions include
  - Request current values of time
    - federation time, federate's logical time (LT), lower bound time stamp (LBTS), minimum next event time
  - Set and request lookahead
  - Time advance request, next event and flush queue request, and grant




## **Ownership Management**

- Allow federates to transfer ownership of object attributes
  - Federates transfer ownership based on federation execution design plans and the RTI arbitrates transactions
  - Offers both 'push' or 'pull' based transactions
    - Acquisition requires current publication and subscription declarations for attribute
- Interface functions include
  - Request ownership divestiture and assumption
  - Request ownership acquisition and release
  - Notification of divestiture and acquisition
  - Query attribute ownership




## **Divesting Ownership**





## **Requesting Ownership**





## **Data Distribution Management**

- Allow federates to specify the distribution conditions for the specific data they send or expect to receive
  - RTI uses this information to route data as specified in declaration management services
  - Not bound by FOM, data distribution can be managed based on other characteristics of objects important to particular federation execution
  - Federation design creates 'routing spaces' for use during runtime; these are specified at federation creation time

#### Interface functions include

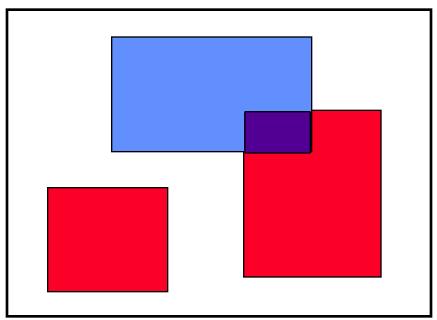
- Create and modify 'update' and 'subscription' regions to bound routing space
- Associate update regions with specific object instances
- Change thresholds for changing regions



#### The Role of the Federate in DDM

- Create Subscription Region
  - Specify conditions under which they expect to receive the object state data and interactions they specified using declaration management services (Subscribe Object Class Attribute and Subscribe Interaction Class) and
- Create Update Region
- Associate Update Region (with an object instance or interaction)
  - Specify conditions under which they are providing data (characteristics of object or interaction which map to dimension of routing space fall with region bounds)
- Modify Region Or Associate Update Region
  - As the state of the objects change, the federate may need to either adjust the bounds on the associated regions or change the association to another region




#### The Role of the RTI in DDM

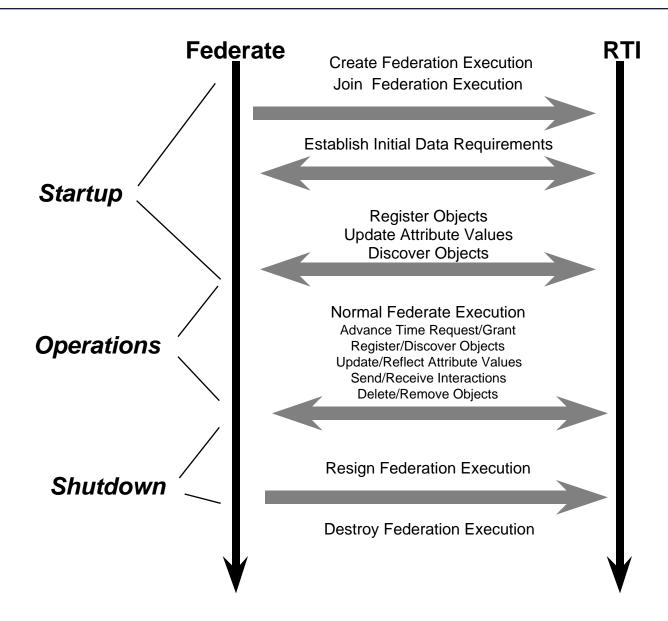
- The routing space, regions, and association data is used by the RTI to distribute data
- When an update region and subscription regions of different federates overlap
  - the RTI ensures that the attribute updates and interactions associated with that update region are routed to federates with subscription regions which overlap the sender's update region
- Change Thresholds
  - The RTI provides feedback to federate on the amount of change in extents which will lead to data distribution changes



#### Illustration of DDM Services

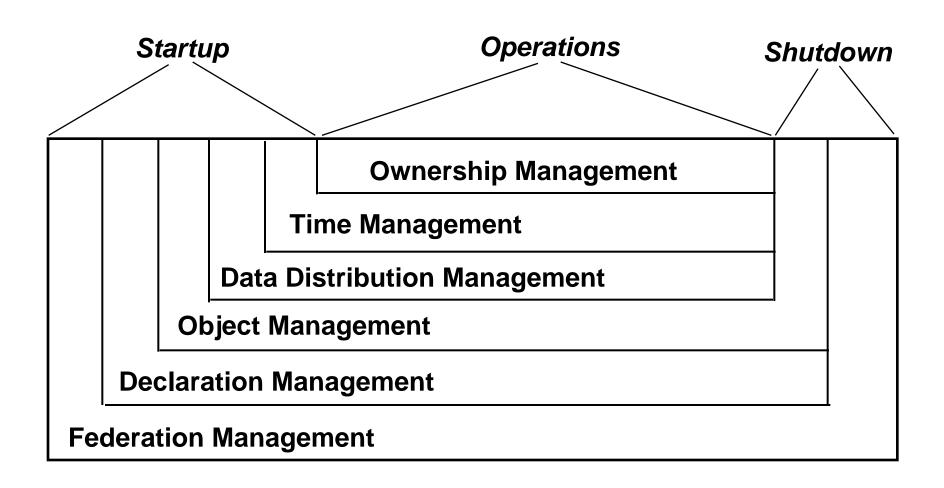
#### **Two Dimensional Interest Space**








Overlap Region - Published Data Sent to Subscribing Federate




## Overview of Federation Execution Life Cycle





## Use of Interface Over Life Cycle of a Federation Execution





## Startup: Federation Management

#### Manage a federation execution throughout the life cycle

- Create Federation Execution
  - Initialize the RTI with Federation Specific Information
    - Establish class, attribute, interaction names and hierarchies, as defined in FOM
    - Set default vales for ordering and transport services
    - Establish names and dimensions of routing spaces (if using data distribution management services)
- Join Federation Execution
  - Affiliates a federate with the federation execution



## Startup: Declaration Management

#### Federate desires to generate and receive data

- Publish Object Class and Publish Interaction Class
  - Informs RTI of ability to update attributes of classes of objects or send classes of interactions
- Subscribe Object Class Attribute and Subscribe Interaction Class
  - Informs RTI of desire to discover object attributes and classes of interactions



## Startup: Object Management

#### Supports creation, modification and deletion of objects

- Request ID
  - Federate requests unique ID numbers from RTI
- Register Object
  - Links an object ID with an instance of an object
- Update Attribute Values
  - Provides current attribute values of an instance of an object
- Discover Object
- Reflect Attribute Values
  - RTI informs federates with a declared interest in attributes objects of their existence and their current values



# Startup: Data Distribution Management

#### Supports management of data distribution

- Create Update Region
- Create Subscription Region
- Associate Update Region
  - Federate identifies subsets of routing spaces which meet data distribution needs of the objects it represents



## **Startup: Time Management**

Controls federate advance along with federation time

- Set default transportation event ordering type for object classes and interactions in RID
- Set Lookahead
  - If using event ordering services for any objects



# Operations: Object and Time Management

#### Object Management

- Update Attributes; Send Interactions
  - Federates export event data
- -Reflect Attributes and Receive Interactions
  - RTI delivers data to federates

#### Time Management

- -Time Advance Request; Next Event Request, Flush Queue Request
  - Federates request time ordered event data from RTI
- Time Advance Grant
  - RTI delivers events up to time requested along permission to move forward
- -Request .... Time
  - Federate queries RTI for time value



# Operations: Declaration and Data Distribution Mgt

#### Declaration Management

- Publish Object Class or Interaction Class
- -Subscribe Object Class Attribute Or Interaction Class
  - Federate can reissue data declarations, overriding previous
- -Control Updates and Interactions
  - RTI can inform federates of changes in need to update or send

#### Data Distribution Management

- -Modify Region; Change Thresholds
- -Associate Update Region
- -Create Update Or Subscription Region
  - Federate can change data routing by changing bound on regions, associating an object with a new region or creating or deleting regions



## Operations: Federation and Ownership Management

#### Federation Management

- Request Pause, Initiate Pause, Pause Achieved
- Request Resume, Initiate Resume, Resume Achieved
  - Federates can request that the federation pause operations and subsequently resume; RTI coordinates with all federates
- Request Federation Save, Initiate Federation Save, Federation Save Achieved
- Request Restore, Initiate Restore, Restore Achieved
  - Federates can request that the federation save state and subsequently restore to a particular saved state; RTI coordinates with all federates

#### Ownership Management

Federates can transfer ownership



## **Shutdown**

#### Federation Management

- -Resign Federation Execution
  - Indicates that a Federate chooses to cease participation
  - Triggers ownership transfer for attributes owned by resigning federate or deletes these attributes (options on the service call)
- Destroy Federation Execution
  - Removes this federation execution from all RTI support; assumes all federates have resigned